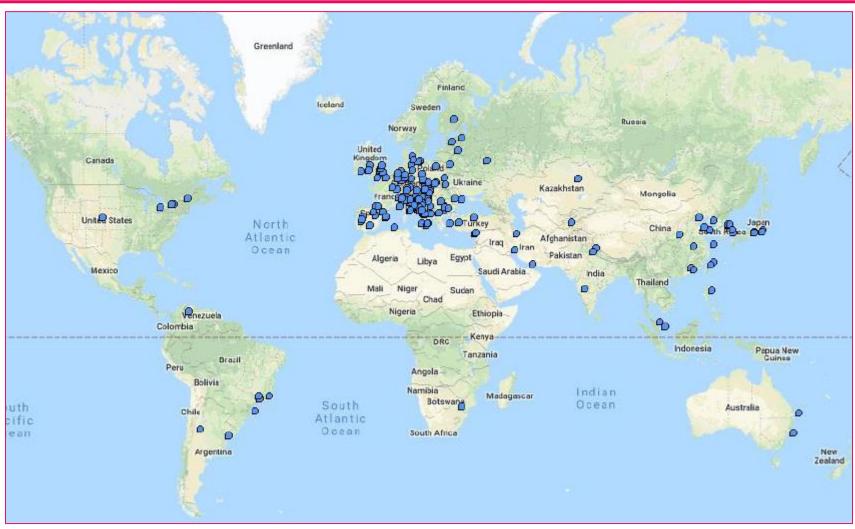


WELCOME TO THE 13th CONFERENCE ON SUSTAINABLE DEVELOPMENT OF ENERGY, WATER AND ENVIRONMENT SYSTEMS

OUR SPONSORS

GOLD

BASIC



OUR PARTICIPANTS

Around 400 participants coming from 49 countries, 215 universities, institutes and companies

OUR PARTICIPANTS

SDEWES Conference series

1st - 12th Conference on Sustainable Development of Energy, Water and Environment Systems

2002, 2003, 2005, 2007, 2009, 2011, 2012, 2013, 2014, 2015, 2016, 2017 ... SEE 2014, 2016, 2018 ... LA 2018...

University of Zagreb + Instituto Superior Técnico

SDEWES Conference series

	2002	2003	2005	2007	2009	2011	2012	2013	2014	2015	2016	2017	2018
COUNTRIES	35	42	46	34	55	52	42	62	56	64	58	61	61
ATTENDED	140	83	134	132	329	418	211	559	320	534	490	563	700+
PRESENTED	98	96	158	230	349	398	231	601	326	532	535	602	770?
SUBMISSIONS	197	162	252	281	709	1029	607	1120	869	1204	1033	1036	1276
Sub/attended	1.4	2.0	1.9	2.1	2.2	2.5	2.9	2.0	2.7	2.3	2,1	1.84	1,82

Published – over 1294 papers

- Renewable & Sustainable Energy Reviews
- **Applied Energy**
- Journal of Cleaner Production
- **Energy Conversion and Management**
- Energy
- Journal of Environmental Management
- International Journal of Hydrogen Energy
- Clean Technologies and Env. Policy
- **Energies**
- Waste Management & Research
- Thermal Science
- **JSDEWES**
- IJSEPM, EES, CET, IJISD, IJESD, MEQ
- http://www.sdewes.org/journals.php

PARTNER JOURNALS

PUBLISHING POLICY

Manuscripts have to be submitted to the special issue of the journal according to instructions provided in the invitation letter. Each manuscript will then be reviewed according to the journal policy

IF: 5.901 SJR: 3.273

IF: 4.380 SJR: 1.801

IF: 3.844 SJR: 1.699

IF: 2.600 SJR: 1.349

Environmental Policy IF: 1.934 SJR: 0.634

Journal IF: 1.173 SIR: 0.425

Chemical Engineering Transactions SJR: 0.394

Energy, Sustainability and Society SJR: 0.278

Quality: An International Journal SIR: 0.265

and Sustainable Development SIR: 0.23

Environment and Sustainable Development SJR: 0.159

Strojarstvo: Journal for Theory and Application in Mechanical of Energy, Water and Environment Systems - JSDEWES

International Journal of Sustainable International Journal of Sustainable Energy Planning and Management Water and Environmental Systems

Journal of Sustainable Development of Energy, Water and Environment Systems

- Editor-In-Chief: Neven Duić
- Online, open access, from 2013 http://www.sdewes.org/jsdewes/
- Publisher: SDEWES Centre
- Indexed: SCOPUS, INSPEC, Hrcak, DOAJ, Google Scholar, Croatian Web Archive, National and University Library in Zagreb
- CiteScore 1.1 (Scopus)
- Web of Science Core Collection Emerging Sources Citation index since 2016

- Use #SDEWES on Twitter and Facebook
- Tag yourself on <u>@sdewes.centre</u> pictures from the conference
- Papers must be presented by the presenting author
- AWARD session, Group Photo session, Poster session, Invited lecture ...

UNIVERSITÀ DEGLI STUDI DI PALERMO

Sito UniPa - 1140x350

UNIVERSITÀ DEGLI STUDI DI PALERMO

Sustainable or un-sustainable, that is the question

Neven Duić

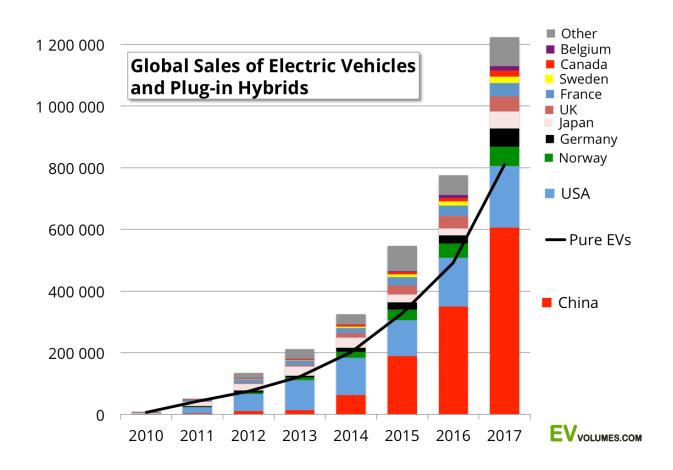
University of Zagreb, Croatia

Editor: Energy Conversion and Management

Subject Editor: Energy Editor-in-Chief: JSDEWES

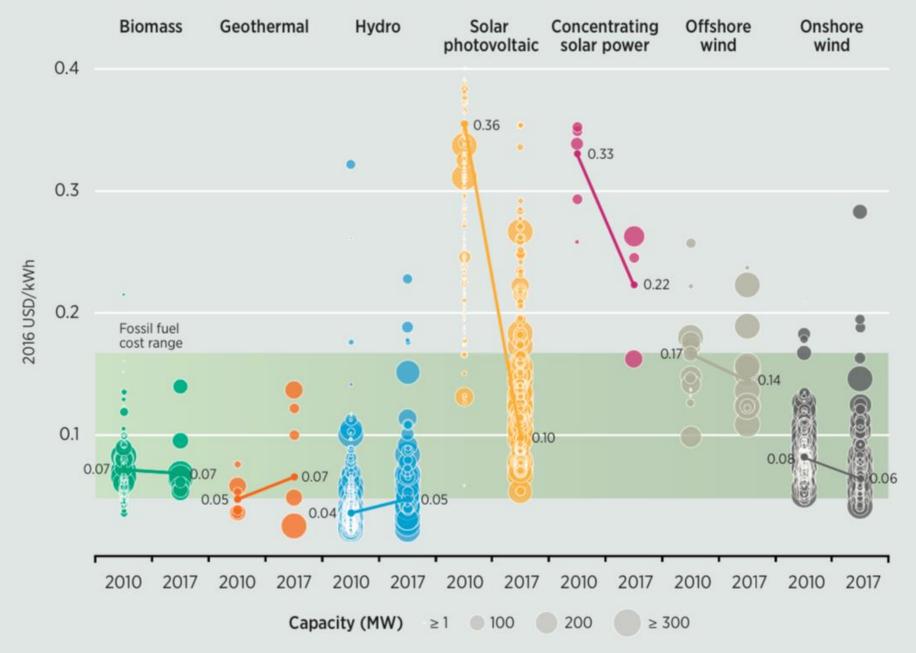
How the Empire fights back ...

Former SEC chair says Musk could be removed as CEO in civil case, go to jail if criminally charged



Transport electrification has started

Global light vehicles sales in 2017

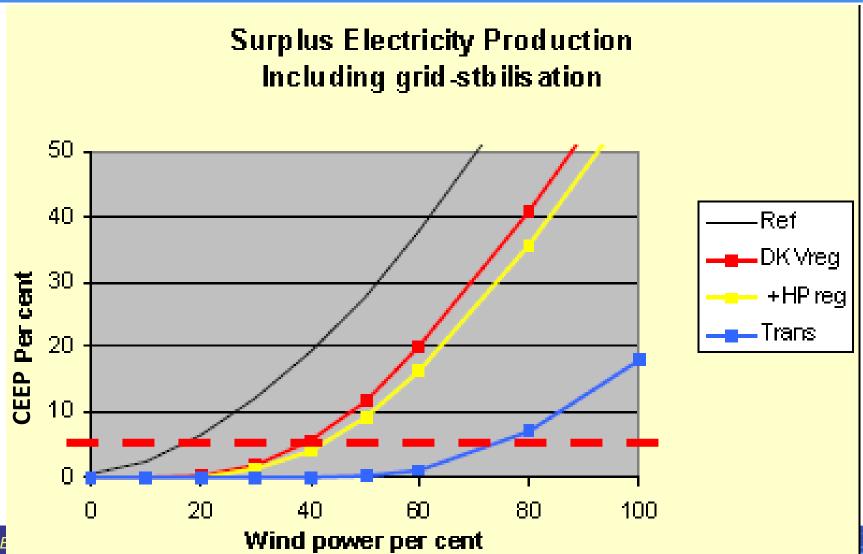

- 1.224 mln PHEV and BEV
- 94.5 mln total
- 1.3% global sales
- 57% PHEV and BEV sales growth
- 2.4% cars sales growth

Forecast for 2018:

 2.1 mln PHEV and BFV

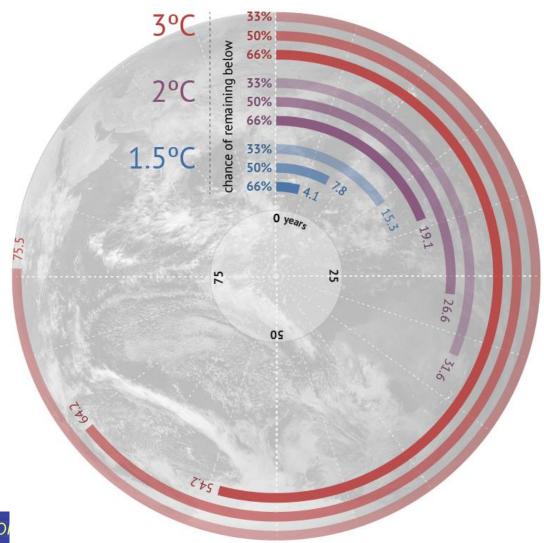
University of Zagreb Faculty of Mechanical Engineering and Naval Architecture

- > How to solve renewables variability/intermittency problem?
 - More grid interconnection
 - Flexibilisation of thermal power plants
 - Wholesale markets
 - Demand response and integration of power, heating, cooling, transport and water systems smart energy systems
 - Energy storage


Demand response

- > 20th century energy systems: supply follows demand
- > 21st century energy systems: demand follows supply -> smart energy systems

DEPARTMENT OF ENERGY, POWER ENGINEERING AND ENVIRONMENT





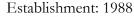
1.5 C carbon budget

We are out of carbon budget by 2021 ... with reasonable probability ...

Questions

- Barriers to change are much higher than change needed! How to smoothly remove barriers to change?
- > Technology is ready! How to roll it much faster?
- > Transition is economically better than business as usual, for most! How to make decisions viable for all?
- > Integration of power, heating, cooling, water and transport system necessary! How to make it work?

Let us help solve the conundrum!


Role of Cities in Addressing Climate Change and Perspectives from the SDEWES Index

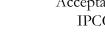
Şiir KILKIŞ

SDEWES International Scientific Committee Member TÜBİTAK Senior Researcher and Associate Professor IPCC AR6-WGIII Lead Author

IPCC Sixth Assessment Report Cycle

Intergovernmental Panel on Climate Change (IPCC) Assessment Reports

- Chapter 1 Introduction and Framing
- Chapter 2: Emissions trends and drivers
- Chapter 3: Mitigation pathways compatible with long-term goals
- Chapter 4: Mitigation and development pathways in the near- to mid-term
- Chapter 5: Demand, services and social aspects of mitigation


- Chapter 12: Cross sectoral perspectives
- Chapter 13: National and sub-national policies and institutions
- Chapter 14: International cooperation
- Chapter 15: Investment and finance
- Chapter 16: Innovation, technology development and transfer
- Chapter 17: Accelerating the transition in the context of sustainable development

Sectoral Chapters

- Chapter 6: Energy systems
- Chapter 7: Agriculture, Forestry, and Other Land Uses (AFOLU)
- Chapter 8: Urban systems and other settlements
- Chapter 9: Buildings
- Chapter 10: Transport
- Chapter 11: Industry

Acceptance by the IPCC: **2021**

Enhanced Importance Attributed to Cities by the IPCC

WG III Chapter 8 "Urban Systems and Other Settlements"

- Demographic perspectives, migration, and urbanisation trends
- Consumption, lifestyle, and linkages between urban and rural areas
- Urbanisation wedge in future emissions and mitigation at global and national levels
- City emissions and drivers analysis, city typologies
- Urban emissions and infrastructure lock-in
- Urban mitigation options and strategies
- Low-carbon city scenarios, options and costs
- Urban form, design, and role of spatial planning
- Urban technologies, including disruptive technologies, the use of information and communication technologies, involving use of data
- · Waste and waste water management, material recycling
- Innovative strategies and climate actions, urban experimentation, city networks and coalitions
- Urban mitigation governance levels, barriers, and opportunities
- Policy instruments and infrastructure investments

Chapter 8: Urban Systems and Other Settlements

Chapter 8:	Urban s	vstems and	other	settlements
Chapter o.	Ulball S	vstellis allt	oulei	settlements

Last Name	First Name	Role	Gender	Country	Citizenship	Current Affiliation
1 LWASA	Shuaib	CLA	M	Uganda	Uganda	Makerere University
2 SETO	Karen	CLA	F	USA	USA	Yale University
3 BAI	Xuemei	LA	F.	Australia	Australia	Australian National University
4 BLANCO	Hilda	LA	F	USA	USA	University of Southern California
5 GURNEY	Kevin	LA	M	USA	USA	Arizona State University
6 KILKIŞ	Şiir	LA	F	Turkey	Turkey	The Scientific and Technological Research Council of Turkey (TÜBİTAK)
7 LUCON	Oswaldo	LA	M	Brazil	Brazil	SÃO PAULO STATE ENVIRONMENT SECRETARIAT
8 MURAKAMI	Jin	LA	M	China	Japan	City University of Hong Kong
9 PAN	Jiahua	LA	M	China	China	Institute for Urban & Environmental Studies, Chinese Academy of Social Sciences
0 SHARIFI	Ayyoob	LA	M	Japan	Iran	National Institute for Environmental Studies
1 YAMAGATA	Yoshiki	LA	M	Japan	Japan	National Institute for Environmental Studies
2 DUBEUX	Carolina	RE	F	Brazil	Brazil	Federal University of Rio de Janeiro (COPPE/UFRJ)
3 URGE-VORSATZ	Diana	RE	F	Hungary	Hungary	Center for Climate Change and Sustainable Energy Policy (3CSEP)


Source: https://www.ipcc.ch/report/authors/report.authors.php?q=37&p=

Cities have a crucial role in addressing urban challenges for a more sustainable Planet!

Special Reports of the Sixth Assessment Cycle

"An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty"

SR15 released in one week!

2018/16/MA

IPCC MEDIA ADVISORY

6 August 2018

Save the Date: IPCC Special Report Global Warming of 1.5°C

GENEVA, Aug 6 – The Intergovernmental Panel on Climate Change (IPCC) will meet in Incheon, Republic of Korea, on 1-5 October 2018, to consider the Special Report Global Warming of 1.5°C. Subject to approval, the Summary for Policymakers will be released on **Monday 8 October** with a live-streamed press conference.

Source: https://www.ipcc.ch/news_and_events/ma-p48.shtml

Role of Cities in Addressing Climate Change

nature

Six research priorities for cities and climate change

Xuemei Bai and colleagues call for long-term, cross-disciplinary studies to reduce carbon emissions and urban risks from global warming.

Source: Bai et al. (2018) *Nature* 2018;555:23–5

Systems approach is crucial for cities while inadequate tools for decision-support are one of the barriers in its realisation

Bai et al. (2016) Curr Opin Environ Sustain;23:69-78.

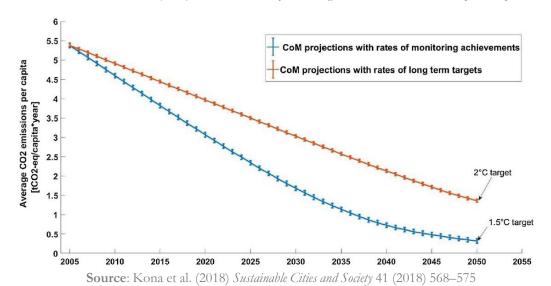
Increasing role of cities in addressing climate change with need for scientific support

Priorities for supporting cities involve expanding observations based on **urban data** and supporting transformation towards low-carbon cities

Bai et al. (2016) Curr Opin Environ Sustain;23:69-78.

Shortcomings remain in supporting a coherent urban science for global sustainability

Acuto et al. (2018) Nature Sustainability 2018;1:2-4.



Role of Cities in Addressing Climate Change

Source: Kona. A. et al. (2017) Covenant of Mayors in Figures: 8-Year Assessment, JRC Reports

Co-benefits from energy savings and improvements in air quality in CoM signatories

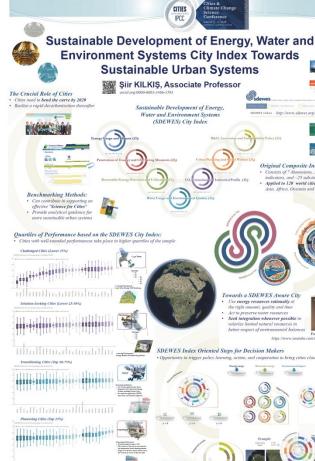
• Over 65,000 years of life saved due to better air quality

Source: Monforti-Ferrario et al. (2018)

Pursuits to Support Transformative Solutions in Cities

Source: https://citiesipcc.org/news/participant-posters-and-presentations

IPCC Cities and Climate Change Conference



Knowledge needs for cities and key research gaps:

- Systemic knowledge base for transformative solutions
- Greater understanding of systemic linkages between urban sectors

Original Composite Indicator · Consists of 7 dimensions, 35 main · Applied to 120 world cities in Europe, Asia, Africa, Oceania and the America

Towards a SDEWES Aware City Use energy resources rationally at the right amount, quality and time

Seek integration whenever possible

SDEWES Index

The Sustainable Development of Energy, Water and Environment Systems (SDEWES) City Index

R&D, Innovation and Sustainability Policy (D_7) Energy Usage and Climate (D_1) 35 Main Indicators in 7 Dimensions ■i1.1 ■i1.2 ■i1.3 ■i1.4 ■i1.5 ■i7.1 ■i7.2 ■i7.3 ■i7.4 ■i7.5 Penetration of Energy and CO₂ Saving Measures (D_2) Urban Planning and Social Welfare (D_6) ■i6.1 ■i6.2 ■i6.3 ■i6.4 ■i6.5 ■i2.1 ■i2.2 ■i2.3 ■i2.4 ■i2.5 Renewable Energy Potential and Utilization (D_3) CO_2 Emissions and Industrial Profile (D_5) ■i5.1 ■i5.2 ■i5.3 ■i5.4 ■i5.5 ■i3.1 ■i3.2 ■i3.3 ■i3.4 ■i3.5 Water Usage and Environmental Quality (D_4)

■i4.1 ■i4.2 ■i4.3 ■i4.4 ■i4.5

Benchmarking Studies with the SDEWES Index

1st SEE SDEWES Conference Ohrid

10th SDEWES Conference Dubrovnik

11th SDEWES Conference Lisbon

9th SDEWES Conference Mediterranean

2nd SEE SDEWES Conference Piran

12th SDEWES Conference Dubrovnik

SDEWES Index

Geographical Focus ^a	Benchmarked Cities	Top 3 Cities	Related Analyses		
• SEE cities	12	Zagreb Bucharest Ohrid	 Ranking of cities based on index results Comparison of best practices and options b 		
Mediterranean Sea basin port cities	22	Nice Venice Dubrovnik	Application of three energy scenariosSDEWES Index Energy Scenario Tool		
• World cities	25	Stockholm Espoo Seville	City pairs for policy learningSDEWES Index Benchmarking Tool		
• SEE cities	18	Klagenfurt Velenje Pécs	 Quartiles of city performance City pairs for policy learning Four step process to support decision-making SDEWES Index Future City Network 		
• World cities	26	Copenhagen Helsinki Gothenburg	 Quartiles of city performance Normative scenario for Rio de Janeiro ^c 		
• World cities	18	Aalborg Reykjavík Riga	SDEWES Index AtlasCity collaboration pairsScenario based on Peta 4.2		

a Corresponds to the geographical focus of the SDEWES Conference series in chronological order from the 1st SEE SDEWES Conference in Ohrid, Macedonia to the 12th SDEWES Conference in Dubrovnik.


b City rankings and comparison of best practices is a common element of analysis for each new sample after the first sample. Additional analyses for other samples are indicated on a cumulative basis.

^c The normative scenario including targets based on Vision Rio 500 is developed after the benchmarking of the city for the 11th SDEWES Conference in Lisbon.

Benchmarking Studies with the SDEWES Index

1st LA SDEWES Conference Rio de Janeiro

3rd SDEWES Conference Novi Sad

13th SDEWES Conference Palermo

Taking Cities as Data Sources for Benchmarking - 1

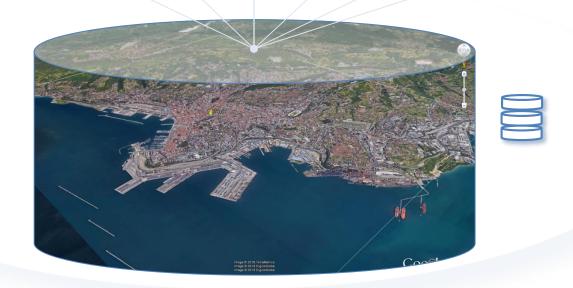
D₁: Energy Usage and Climate

City (C_j)

Energy usage of buildings (MWh)

Energy usage of transport (MWh)

Energy usage per capita (MWh/capita) Total degree days (Days °C) ^a


Heating degree days

Cooling degree days

Final to primary energy ratio (%)

- Residential buildings
- Tertiary buildings
- Municipal buildings
- Private transport
- Public transport
- Municipal vehicle fleet
- Buildings
- Transport
- Industry (Non-ETS)
- Public lighting

- Energy production
- Transmission and distribution
- Storage/end-usage

Taking Cities as Data Sources for Benchmarking - 2

D₂: Penetration of Energy and CO₂ Saving Measures

City (C_i)

Action Plan for Energy and CO₂ **Emissions**

Combined heat and power based DH/C

Energy savings in end-usage (buildings)

Density of public transport network

Efficient public lighting armatures

- SEAP/SECAP
- Equivalent strategy
- District heating/cooling (DH/C) •
- Combined heat and power
- Integration of multiple sources
- Low temperature DH/C network
- Renewable power to hydrogen (P2G)
- Refurfishment of buildings
- Net-zero energy buildings/districts
- Total urban rail per km²
- Daily usership per km
 - Bievcle sharing stations
- Solid-state lighting
- Solar energy based armatures

Taking Cities as Data Sources for Benchmarking - 3

D₃: Renewable Energy Potential and Utilization

City (C_j)

Solar energy potential (Wh/m²/day) a

Wind energy potential (m/s) ^a

Geothermal energy potential (mW/m²) b

Renewable energy in electricity production (%) ^c

Green energy in transport (%) d

- Irradiation on optimally inclined plane
- Average wind speed at 50 m height
- Mean heat-flow density
- Solar, wind, geothermal, bioenergy, hydropower, wave
- Biofuel blends
- Electricity (with > 45% RE share)

D₄: Water Usage and Environmental Quality

Domestic water Annual Water quality index **Ecological footprint Biocapacity** City (C_i) consumption per capita mean PM₁₀ (/100)per capita (gha) per capita (gha) (m^3) concentration (µg/m³) Water footprint of Dissolved oxygen Urban monitoring Demand for land · Natural regenerative domestic blue water • pH level capacity stations across six categories consumption Conductivity Nitrogen Phosphorous

D₅: CO₂ Emissions and Industrial Profile

City (C_j)

CO₂ emissions of buildings (t CO₂) CO₂ emissions of transport (t CO₂) Average CO₂ intensity (t CO₂/MWh)

Number of CO₂ intense industries

Airport ACA level and measures

- Residential buildings
- Tertiary buildings
- Municipal buildings
- Private transport
- Public transport
- · Municipal vehicle fleet
- Energy related CO₂ emissions
- Waste and wastewater treatment
- Energy intense industries included in EU ETS
 Airport Carbon
 Accreditation (ACA)
 - Mapping CO₂ emissions
 - Mitigation/optimization
 - Renewable energy measures
 - Landside/ground handling/airside
 - Airports < 150,000 PAX

D₆: Urban Planning and Social Welfare

City (C_j)

Waste and wastewater managemen

Compact urban form and green spaces

GDP per capita (PPP\$)

Inequality adjusted well-being (/10)

Tertiary education rate (%)

- Recycling and compositing share
- Waste generated per capita (kg)
- WWTD compliance (BOD, COD, TSS)
- Coverage of wastewater treatment
- Population living in core area(s)
- Urban sprawl index (%)
- Share of green area in urban area / share of impermeable surface area
- Number and area of protected reserves, RAMSAR, national parks

• Citizen satisfaction with daily experience

Attainment of ISCED 5 and 6

D₇: R&D, Innovation and Sustainability Policy

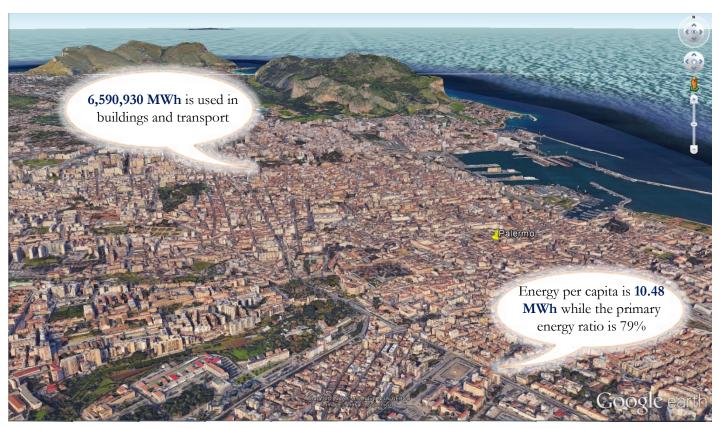
City (C_j)

R&D and innovation policy orientation

National patents in clean technologies

Universities/ institutes in the local ecosystem

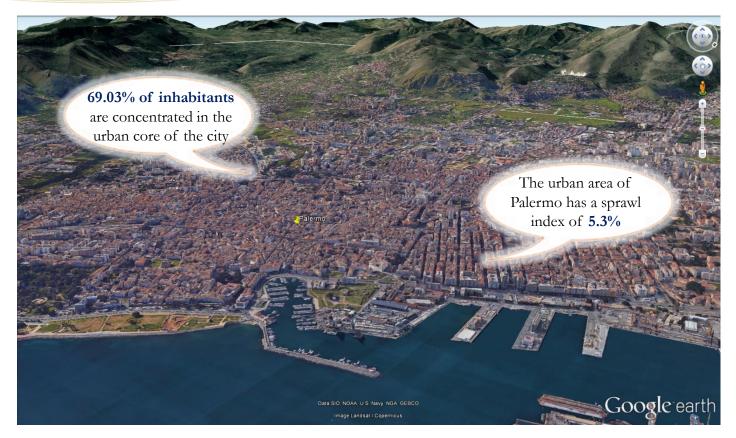
National h-index Reduction
Target for CO₂
Emissions


- R&D and innovation priorities
- Relation to SEAP/SECAP/SUMP
- Gross expenditure on research and development (GERD)/ GDP
- Y02 and Y04 coded patents (Building technologies, energy generation, transport, smart grid, carbon capture and storage)
- Share in total national patents
- Public/private universities/institutions
- Scimago top 1000 institutions
- Concentration in the city (%)
- Knowledge production including sustainability
- 2020 CO₂ reduction target
- 2030, 2040 and 2050 targets annualized to 2020

Data sources: Palermo Piano di Azione per l'Energia Sostenibile; Regione Siciliana, Rapporto di Monitoraggio Ambientale; Noussan et al. (2018)

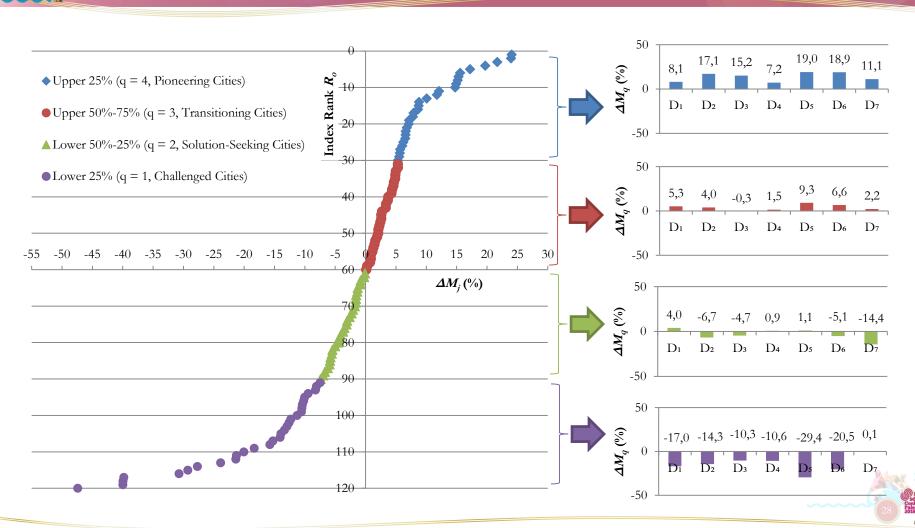
Data sources: Ecosistema Urbano: Rapporto sulle performance ambientali delle cittá 2017; Data excludes a 53 kW concentrated solar power plant

Data sources: Ecosistema Urbano: Rapporto sulle performance ambientali delle cittá 2017; Urban Waste Water Treatment Directive Monitoring



Data sources: Ecosistema Urbano: Rapporto sulle performance ambientali delle cittá 2017; Baabou et al. (2017) Enn. Sci Policy Vol. 69, p.94-104

Data sources: OECD Metropolitan Areas Database

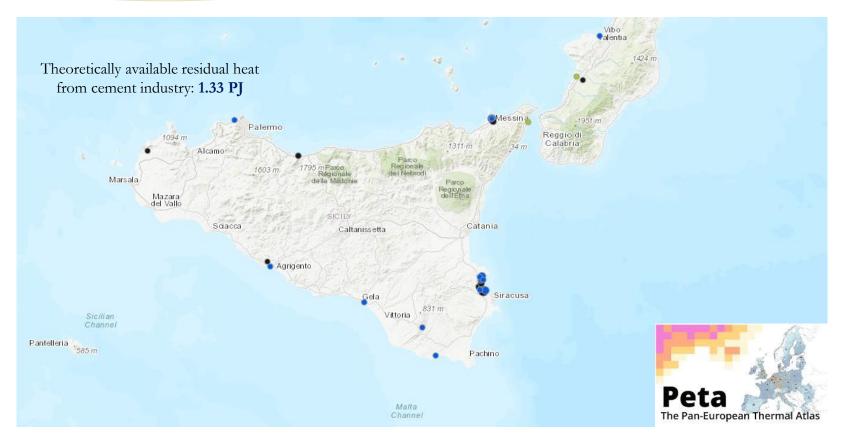

Data sources: OECD Metropolitan Areas Database; European Climate Adaptation Platform

Palermo: Transitioning Cities of the Sample

Exceling Coherent Above Average Performances

Integrated Urban Transitions: SDEWES Aware City

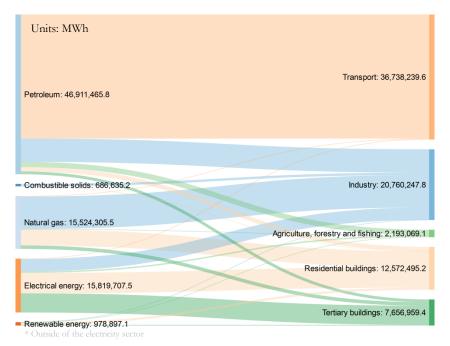
Perspectives	Urban Energy Systems	Urban Water Systems	Urban Environment Systems
Specific system scope / focus ^a	Provision of energy resources to meet energy services in urban areas	Provision of water services to produce, distribute, collect and treat water resources	Provision of services to minimize, recycle and collect waste, reduce emissions and pollutants, and increase environmental quality
Urban concepts in the literature	Energy efficient cityRenewable energy city	Water Sensitive cityWater Wise CityZero Wastewater city	 Climate Neutral City Zero Waste Municipality
Related urban transitions	Urban energy transition	Urban water transition	Urban circular economy Urban symbiosis
Examples of integrated, cross-sectoral perspectives	 Use of residual heat from industry in the building sector Use of energy from the wastewater sector (residual heat and biogas) 	 Renewable energy for water pumping demands Demand response in the wastewater sector Co-location of energy and water infrastructure 	 Reduction of CO₂ emissions from energy, water and waste sectors in urban areas Urban planning to reduce energy and water usage and increase water permeability
Proposed vision for urban systems	←——"SDEWES" Aware City ————		


Possible Synergy with Energy Foresight for Palermo

Source: EU Roadmaps for Energy (R4E) Project: Ambition, Vision and Roadmap Smart Buildings and Smart Mobility Palermo

Energy Sharing and Cross-Sectoral Strategies

Source: Pan-European Thermal Atlas https://hre.aau.dk/resource-center/peta4/


Integrated Penetration of Renewables Across Sectors

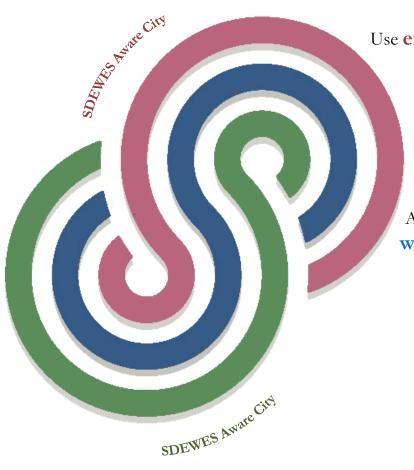
Increasing the share of electricity in transport

sime is of the essence

Greater pace is required to mobilize renewable energy and energy efficiency solutions

Increasing the share of renewables in the electricity mix

Reducing the energy demand and increasing flexibility, including in the wastewater sector

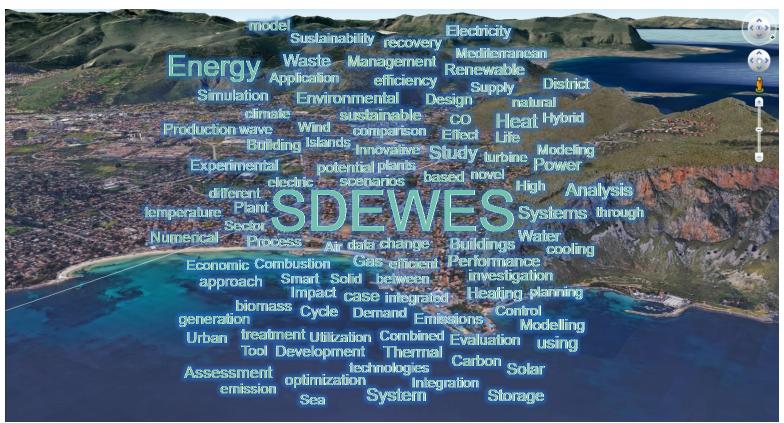

Substituting the combustion of natural gas for low exergy demands

Sankey Based On: Regione Siciliana, Rapporto di Monitoraggio Ambientale

Urban transitions in energy, water and environment systems towards SDEWES-Aware cities can further accelerate progress closer to the 1.5°C target

Towards SDEWES Aware Cities

Use **energy** resources rationally at the right amount, quality, and time


Act to preserve water resources

The state of the state o

And seek integration whenever possible to valorize limited natural resources in better respect of **environmental** balances

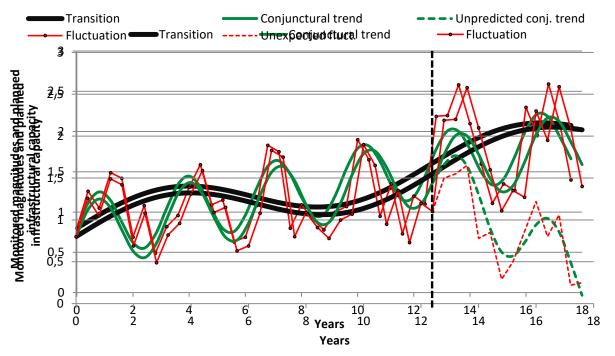
Dare to Challenge and Envision Sustainable Cities

Introductory address

Undergoing transitions while staying in the middle of ...

Prof. Antonio Piacentino

University of Palermo



Transitions

Transitions imply deep modifications in the societal framework needed to open new opportunities and solving new problems

They usually involve **simultaneously** several spheres of human existence ...

In the last two decades we have been observing that transitions, which are intrinsically slow processes, have faced more and more rapid and less predictable conjunctural trends and fluctuations

Together with opportunities, transitions imply serious risks

Sicily as a best example of how, staying in the middle of ... can exacerbate risks and make planning more critical

In the middle of ... the sea

Coinciding with the growth of "Greening the Islands" initiative, this Conference is the first one to be held on an island.

Most of islands, like Sicily, share in common:

- A delicate equilibrium between <u>terrestrial</u> <u>and marine ecosystems</u>
- A <u>deep interrelation between environmental</u> <u>and economic sustainability</u>, due to the strong naturalistic touristic vocation

Parco dell'Alcantara

San Vito Lo Capo

Scopello

In the middle of ... the mediterranean people and cultures (1)

Due to its strategic position in the middle of Mediterranean Sea, Sicily has been playing, in the last few years, a relevant role in facing some of the highest human challenges related to political instabilities and wealth inequalities, with the consequent migration processes ...

At meantime, this strategic position has favoured, over the centuries, a number of dominations, such as:

Classical age

- Greek period
- Phoenician period
- Roman period

Middle age

- Germanic and Byzantine period
- Arab muslim period
- Viking age
- Norman period
- Swabian period
- Angevins period
- Aragonese period

Pre-modern era

- Spanish period
- Austrian period
- Bourbon period

In the middle of ... the mediterranean people and cultures (2)

All these cultures have left a cultural heritage of enormous value ...

The Valley of the Temples –UNESCO World Heritage Site

Ancient Theatre - Taormina

Casa Professa – Baroque period

Zisa Castle and Gardens – UNESCO Wolrd Heritage Site

Preservation of these beauties is obviously a priority for any planning action...

... but what is the relationship with sustainable transition issues?

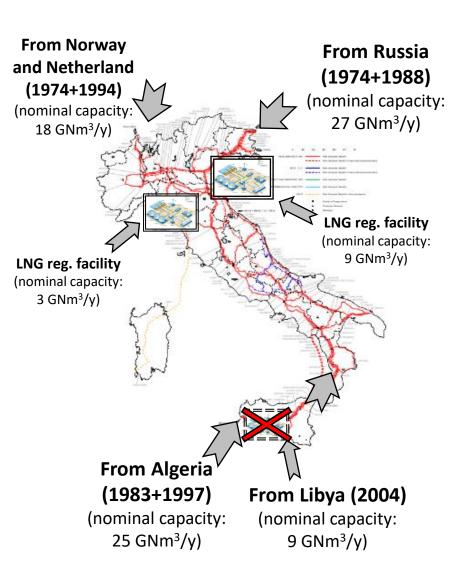
Palatine Chapel –UNESCO World Heritage Site

In the middle of ... the mediterranean people and cultures (3)

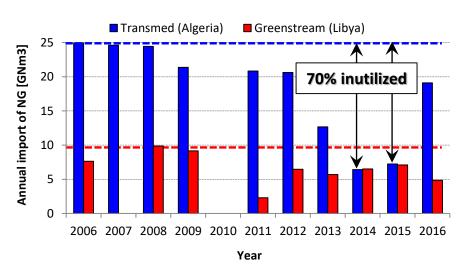
- Pressure exerted, in terms of antropic impact, by <u>almost 5 millions tourists</u> (approximately the same number of inhabitants), with presences mostly concentrated in summer
- Frequent need for accurate evaluation of feasibility of new renewable installation in compliance with archaelogical and landscaping constraints.

The problem of architectural integration of PV solar and buildings cannot be addressed looking for solutions like:

but trying to find original and case-by-case solution to answer to the question:

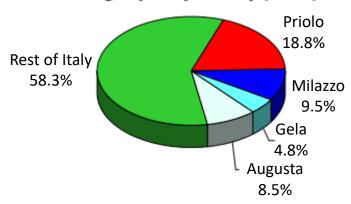

What (if anything) can be integrated here???

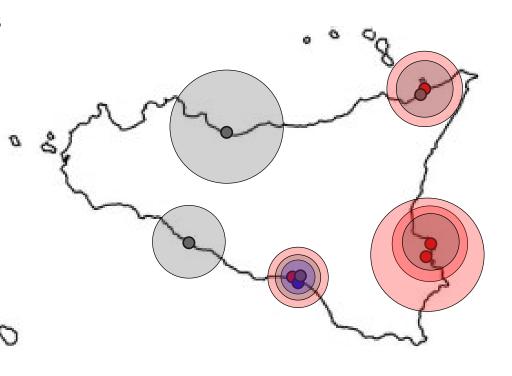
This "sweet" problem is obviously shared with several other cities in Italy, where new infrastructures (especially for mobility issues or distribution pipes) often encounter archaelogical obstacles.


In the middle of ... the mediterranean countries (1)

Again due to its position, being the Italian region closest to the countries of southern rim of the Mediterranean, Sicily has been representing an **energy hub** for Italy.

Sicily consumes approximately 4 GNm³ of NG per year, thus being the 33 GNm³ import capacity mainly designed <u>to move</u> gas toward the rest of Italy via pipes.


Also, there was a serious possibility to have this import capacity increased by a **new LNG regasification facility** with 8 GNm³ capacity, but investors recently renounced to this project.

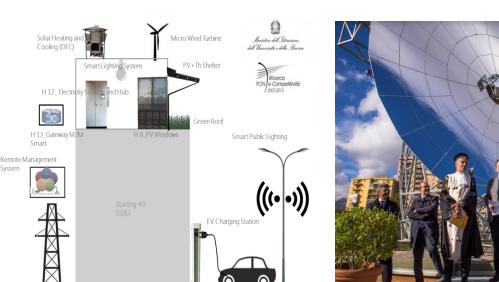

In the middle of ... the mediterranean countries and routes (2)

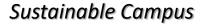
Again due to its favourable position, in '50s and '60s large investments were made in the creation of refineries, petrochemical plants, mostly integrated with CHP power plants and, in some case, with thermal desalination plants.

Refining capacity in Italy (2013)

Obviously, environmental impact of such large industrial areas has been somewhere dramatic, but conversions are being implemented to less polluting technologies.

Could Sicily leave with less polluting plants ...

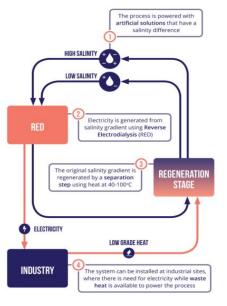

... in the short and medium term there would be a serious problem of **social sustainability**!


In the middle of ... expectations of future generations

Better integration between naturalistic and cultural potential of the island and more sustainable productive sectors may be probably achieved through ... <u>CULTURE</u>!

Academic institutions are playing a driving role, creating open minded and skilled economists and engineers ...

... also giving examples through good practices and innovative projects:



Parabolic Solar Dish-Stirling

Salinity Gradient Engines

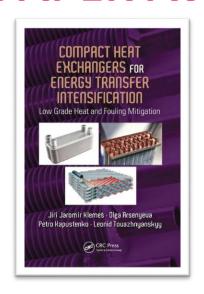
AWARD CEREMONY

AWARD COMMITTEE

Prof. Natasa Markovska
Prof. Antonio Piacentino
Prof. Simeon Oka
Prof. Ingo Stadler
Dr. Brian Vad Mathiesen
Prof. Aleksander
Zidanšek

HONORARY AWARD

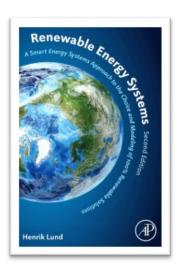
Prof. Viacheslav Kafarov



BEST PAPER AWARD

3rd BEST PAPER AWARD

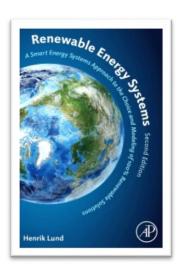
Gellio Ciotti


Integrating industrial waste heat recovery into sustainable Smart Energy Systems

by Patrizia Simeoni*, Gellio Ciotti, Mattia Cottes, Antonella Meneghetti, Gioacchino Nardin

2nd BEST PAPER AWARD

Giovanni Barone


AIR-BASED PHOTOVOLTAIC THERMAL COLLECTORS: THEORETICAL AND EXPERIMENTAL ANALYSIS OF A NOVEL LOW-COST PROTOTYPE

by Giovanni Barone, Annamaria Buonomano, Cesare Forzano, Adolfo Palombo*, Orestis Panagopoulos

BEST PAPER AWARD

Henrik Pieper

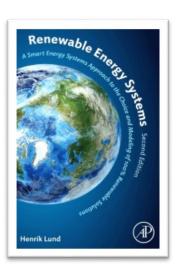
Assessment of a Combination of Three Heat Sources for Heat Pumps to Supply District Heating

by Henrik Pieper*, Torben Ommen, Brian Elmegaard, Wiebke Brix Markussen

MOST CITED JSDEWES PAPER

Journal of Sustainable Development of Energy, Water and Environment Systems

Most cited paper:


 Highest score in: Number of citations during two calendar years following publication

AWARD:

Pietro Romano

Optimization of photovoltaic energy production through an efficient switching matrix

by Pietro Romano, Roberto Candela, Marzia Cardinale, Vincenzo Li Vigni, Domenico Musso, Eleonora Riva Sanseverino

(Volume 1, 2013)

Karl-Heinz Kettl

Optimal Renewable Energy Systems for Regions

by Karl-Heinz Kettl, Nora Niemetz, Michael Eder, Michael Narodoslawsky
Pietro Romano

(Volume 2, 2014)